All files / ext.wikilambda.app/mixins schemata.js

96.82% Statements 366/378
92.23% Branches 95/103
100% Functions 12/12
96.82% Lines 366/378

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 3797x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 1142x 1142x 733x 733x 733x 149x 149x 19x 19x 149x 149x 733x 733x 733x 571x 571x 729x 729x 733x 1142x 1142x 1142x 1142x 8x 8x 8x 8x 5x 5x 8x 8x 3x 3x 8x 8x 3x 8x 5x 5x 8x 1142x 1142x 1142x 1142x 1x 1142x 262x 1141x 93x 879x 786x 786x 503x 786x 283x 283x 283x 283x 283x 283x 283x 283x 5x 5x 283x 251x 251x 251x 278x 2x 2x 278x 276x 806x 276x 276x 1141x 1142x 7x 212x 212x 212x 7x 5x 5x 5x 7x 7x 7x 7x 7x 7x 7x 7x 7x 2701x 2701x 2701x 2701x 2701x 1x 2701x 1532x 1231x 1231x 1231x 1231x 1532x 301x 301x 301x 301x 301x 2700x 316x 1166x 718x 718x 718x 852x 2x 2x 2x 2x 2x 2x 852x 850x 850x 2141x 2141x 139x 139x 139x 2141x             2141x 57x 57x 57x 2141x 82x 82x 82x 1863x 1863x 850x 2700x 2701x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 4x 4x 4x 4x 4x 4x 4x 4x     4x     4x 4x 4x 4x 4x 4x 7x 7x 7x 7x 7x 7x 7x 7x 148x 148x 148x 148x 148x 148x 148x 148x 148x 148x 148x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 95x 4x 4x 4x 4x 4x 4x 4x 4x 4x 95x 91x 91x 24x 91x 24x 24x 24x 24x 24x     24x 24x 67x 95x 95x 95x 95x 28x 4x 4x 28x 6x 6x 24x 18x 18x 28x 28x 95x 95x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x 85x 85x 85x 54x 54x 54x 135x 135x 135x 81x 81x 54x 54x 85x 85x 7x 7x 7x 7x 7x 7x 7x 7x 7x 7x  
/**
 * WikiLambda Vue editor: schemata mixin
 * Mixin with functions to convert zobjects between hybrid and canonical forms.
 * Thsse conversions are distinct from canonicalize and normalize of function-schemata; hybrid form
 * meets slightly different representational requirements of the UI layer.
 *
 * @copyright 2020– Abstract Wikipedia team; see AUTHORS.txt
 * @license MIT
 */
'use strict';
 
/* eslint-disable no-implicit-globals */
 
const Constants = require( '../Constants.js' ),
	typeUtils = require( './typeUtils.js' ).methods;
 
// Note: This is intentionally "wrong" in that it allows for Z0.
// It excludes letters so as not to apply to keys (containing a 'K').
const referenceRe = /^Z0*[1-9]*\d*$/;
const errorTypeReferenceRe = /^Z5\d{2}$/;
 
/**
 * Transform a ZObject from hybrid form to canonical form.  In hybrid form, strings and references are in normal
 * form, but lists are in canonical form. If called on a ZObject already in canonical form, returns the ZObject
 * unchanged.
 *
 * This also handles lists in normal form; this is done defensively, because the orchestrator can still return normal
 * form sometimes (T354917). Normal forms are not handled as thoroughly as function-schemata's canonicalize.
 *
 * @param {Object | Array | string | undefined} zobject
 * @return {Object | Array | string | undefined}
 */
function hybridToCanonical( zobject ) {
	function canonicalizeZ6OrZ9( targetZObject ) {
		const objectType = targetZObject[ Constants.Z_OBJECT_TYPE ];
 
		if ( objectType === Constants.Z_STRING ) {
			const Z6 = targetZObject[ Constants.Z_STRING_VALUE ];
			if ( Z6 && typeof Z6.match === 'function' && Z6.match( referenceRe ) ) {
				return targetZObject;
			}
			return Z6 || '';
		}
 
		const Z9 = targetZObject[ Constants.Z_REFERENCE_ID ];
		if ( Z9 && typeof Z9.match === 'function' && Z9.match( referenceRe ) ) {
			return Z9;
		}
 
		return '';
	}
 
	// Given a typed list in normal form, convert its elements to canonical and return them in an array
	// (while ignoring its Z1K1)
	function zlistToArray( zlist, arr ) {
		const head = zlist[ Constants.Z_TYPED_OBJECT_ELEMENT_1 ],
			tail = zlist[ Constants.Z_TYPED_OBJECT_ELEMENT_2 ];
 
		if ( typeof arr === 'undefined' ) {
			arr = [];
		}
 
		if ( head ) {
			arr.push( hybridToCanonical( head ) );
		}
 
		if ( tail ) {
			return zlistToArray( tail, arr );
		} else {
			return arr;
		}
	}
 
	let canon = {};
 
	if ( typeof zobject === 'undefined' ) {
		return undefined;
	} else if ( typeof zobject === 'string' ) {
		canon = zobject;
	} else if ( Array.isArray( zobject ) ) {
		canon = zobject.map( ( element ) => hybridToCanonical( element ) );
	} else if (
		[ Constants.Z_REFERENCE, Constants.Z_STRING ].includes( zobject[ Constants.Z_OBJECT_TYPE ] )
	) {
		canon = canonicalizeZ6OrZ9( zobject );
	} else if (
		// Allow for typed lists in normal form, where the list's Z_OBJECT_TYPE is a function call.
		// See also the header comments for this function.
		typeUtils.isTruthyOrEqual( zobject, [
			Constants.Z_OBJECT_TYPE,
			Constants.Z_FUNCTION_CALL_FUNCTION,
			Constants.Z_REFERENCE_ID
		], Constants.Z_TYPED_LIST )
	) {
		const itemType = zobject[ Constants.Z_OBJECT_TYPE ][ Constants.Z_TYPED_LIST_TYPE ];
		canon = [ hybridToCanonical( itemType ), ...hybridToCanonical( zlistToArray( zobject ) ) ];
	} else if ( zobject[ Constants.Z_OBJECT_TYPE ] &&
		// Accommodate both hybrid form and canonical
		( zobject[ Constants.Z_OBJECT_TYPE ][ Constants.Z_REFERENCE_ID ] === Constants.Z_QUOTE ||
			zobject[ Constants.Z_OBJECT_TYPE ] === Constants.Z_QUOTE )
	) {
		canon[ Constants.Z_OBJECT_TYPE ] = Constants.Z_QUOTE;
		canon[ Constants.Z_QUOTE_VALUE ] = zobject[ Constants.Z_QUOTE_VALUE ];
	} else {
		Object.keys( zobject ).forEach( ( key ) => {
			canon[ key ] = hybridToCanonical( zobject[ key ] );
		} );
	}
	return canon;
}
 
function isString( s ) {
	return typeof s === 'string' || s instanceof String;
}
 
function isZid( k ) {
	return k.match( /^Z[1-9]\d*$/ ) !== null;
}
 
/**
 * Transform a ZObject from canonical form to hybrid form.  In hybrid form, strings and references are in normal
 * form, but lists remain in canonical form. If called on a ZObject already in hybrid form, returns the ZObject
 * unchanged.
 *
 * @param {Object | Array | string} zobject
 * @return {Object|Array|undefined}
 */
function canonicalToHybrid( zobject ) {
	let hybrid = {},
		keys;
 
	if ( typeof zobject === 'undefined' ) {
		return undefined;
	} else if ( typeof zobject === 'string' ) {
		if ( typeUtils.getZObjectType( zobject ) === Constants.Z_REFERENCE ) {
			hybrid = {
				Z1K1: Constants.Z_REFERENCE,
				Z9K1: zobject
			};
		} else {
			hybrid = {
				Z1K1: Constants.Z_STRING,
				Z6K1: zobject
			};
		}
	} else if ( Array.isArray( zobject ) ) {
		hybrid = zobject.map( ( element ) => canonicalToHybrid( element ) );
	} else if ( zobject[ Constants.Z_OBJECT_TYPE ] &&
		// Accommodate both hybrid form and canonical
		( zobject[ Constants.Z_OBJECT_TYPE ][ Constants.Z_REFERENCE_ID ] === Constants.Z_QUOTE ||
			zobject[ Constants.Z_OBJECT_TYPE ] === Constants.Z_QUOTE )
	) {
		const normalType = {
			Z1K1: Constants.Z_REFERENCE,
			Z9K1: Constants.Z_QUOTE
		};
		hybrid[ Constants.Z_OBJECT_TYPE ] = normalType;
		hybrid[ Constants.Z_QUOTE_VALUE ] = zobject[ Constants.Z_QUOTE_VALUE ];
	} else {
		keys = Object.keys( zobject );
		for ( let i = 0; i < keys.length; i++ ) {
			if ( keys[ i ] === Constants.Z_OBJECT_TYPE && (
				zobject.Z1K1 === Constants.Z_STRING || zobject.Z1K1 === Constants.Z_REFERENCE ) ) {
				hybrid.Z1K1 = zobject.Z1K1;
				continue;
			}
			if ( keys[ i ] === Constants.Z_PERSISTENTOBJECT_ID && isString( zobject.Z2K1 ) ) {
				hybrid.Z2K1 = {
					Z1K1: Constants.Z_STRING,
					Z6K1: zobject.Z2K1
				};
				continue;
			}
			if ( keys[ i ] === Constants.Z_STRING_VALUE && isString( zobject.Z6K1 ) ) {
				hybrid.Z6K1 = zobject.Z6K1;
				continue;
			}
			if ( keys[ i ] === Constants.Z_REFERENCE_ID && isString( zobject.Z9K1 ) ) {
				hybrid.Z9K1 = zobject.Z9K1;
				continue;
			}
			hybrid[ keys[ i ] ] = canonicalToHybrid( zobject[ keys[ i ] ] );
		}
	}
	return hybrid;
}
 
/**
 * Return the ZMap value corresponding to the given key, if present.
 * TODO (T302015) When ZMap keys are extended beyond Z6/Z39, update accordingly
 *
 * @param {Object} zMap a Z883/Typed map, in canonical form
 * @param {Object} key a Z6 or Z39 instance, in canonical form
 * @return {Object|undefined} a Z1/Object, the value of the map entry with the given key,
 * or undefined if there is no such entry
 */
function getValueFromCanonicalZMap( zMap, key ) {
	const K1Array = zMap[ Constants.Z_TYPED_OBJECT_ELEMENT_1 ];
	// Ignore first item in the canonical form array; this is a string representing the type
	for ( let i = 1; i < K1Array.length; i++ ) {
		const entry = K1Array[ i ];
		// To accommodate our current programming practices, we need to allow for either key here:
		const currentKey = entry[ Constants.Z_TYPED_OBJECT_ELEMENT_1 ] || entry[ Constants.Z_TYPED_PAIR_TYPE1 ];
		if ( ( currentKey === key ) ||
			( currentKey[ Constants.Z_OBJECT_TYPE ] === Constants.Z_STRING &&
				key[ Constants.Z_OBJECT_TYPE ] === Constants.Z_STRING &&
				currentKey[ Constants.Z_STRING_VALUE ] === key[ Constants.Z_STRING_VALUE ] ) ||
			( currentKey[ Constants.Z_OBJECT_TYPE ] === Constants.Z_KEY_REFERENCE &&
				key[ Constants.Z_OBJECT_TYPE ] === Constants.Z_KEY_REFERENCE &&
				currentKey[ Constants.Z_KEY_REFERENCE_ID ] === key[ Constants.Z_KEY_REFERENCE_ID ] ) ) {
			// To accommodate our current programming practices, we need to allow for either key here:
			return entry[ Constants.Z_TYPED_OBJECT_ELEMENT_2 ] || entry[ Constants.Z_TYPED_PAIR_TYPE2 ];
		}
	}
}
 
/**
 * Finds all of the ZIDs appearing in an arbitrary ZObject.
 *
 * @param {Object|string} zobject a Z1/Object
 * @param {boolean} returnKeys if set to true, return both matching Zids and matching Keys
 * @return {Set} Set of (string) ZIDs
 */
function extractZIDs( zobject, returnKeys = false ) {
	const str = JSON.stringify( zobject );
	const regexp = /(Z[1-9]\d*)(K[1-9]\d*)?/g;
	const matches = [ ...str.matchAll( regexp ) ];
	const allMatches = returnKeys ?
		matches.map( ( groups ) => groups[ 0 ] ) :
		matches.map( ( groups ) => groups[ 1 ] );
	const uniqueMatches = [ ...new Set( allMatches ) ];
	// sort so that keys are returned before zids
	return uniqueMatches.sort( ( a, b ) => ( a.includes( 'K' ) ? ( b.includes( 'K' ) ? 0 : -1 ) : 1 ) );
}
 
// These error types have no keys whose values contain nested error content.  If a error type ZID
// appears here, extractErrorStructure will not search through any children of a zobject of that type.
const errorTypesNotToTraverse = new Set( [ 'Z501', 'Z505', 'Z508', 'Z511', 'Z512', 'Z513', 'Z516',
	'Z531', 'Z532', 'Z533', 'Z534', 'Z535', 'Z536', 'Z537', 'Z542', 'Z547', 'Z548', 'Z551', 'Z553' ] );
 
/**
 * Traverses a ZObject to find all the suberrors.  (A suberror is a zobject
 * whose type is an instance of Z50/'Error type'). Example:
 *   { Z1K1: 'Z500', Z500K1: 'Could not find argument Z811K1' }
 * For each suberror found, the result includes a JS object with properties
 * 'errorType', 'children', and (optionally) 'explanation'.  Example:
 *   { errorType: 'Z500', explanation: 'Could not find argument Z811K1', children: [] }
 *
 * The 'children', if any, are additional suberrors found within the nested ZObjects of
 * this suberror.
 *
 * zobject is normally a Z5 in the top level call, but doesn't have to be.
 *
 * @param {Object} zobject
 * @return {Array} of objects
 */
function extractErrorStructure( zobject ) {
 
	/**
	 * Checks if a given zobject is a suberror (a zobject whose type is an instance of Z50/'Error type').
	 * If so, returns a JS object with keys errorType and (optionally) explanation.  If not, returns null.
	 *
	 * The 'explanation' is an explanatory string for this suberror.
	 * Such strings are expected for Z500, but are also generated in the orchestrator for
	 * some other error types. In addition to explanatory strings, a few other useful keys
	 * with string values will show up here, e.g. Z503K1/'feature name' and Z504K1/ZID.
	 *
	 * Allows for the more relaxed Z5/Error format from the orchestrator, in which the suberror's
	 * type appears directly as the value of Z1K1/type, and also the stricter format, in which
	 * it appears in a function call to Z885/'Errortype to type'.  Z885K1 is the 'errortype' key of Z885.
	 *
	 * @param {Object} targetZObject
	 * @return {Array|undefined} of objects
	 */
	function checkIfSuberror( targetZObject ) {
		if (
			typeof targetZObject === 'object' && targetZObject.Z1K1 &&
			typeof targetZObject.Z1K1 === 'string' && targetZObject.Z1K1.match( errorTypeReferenceRe )
		) {
			// Handle the relaxed Z5/Error format from the orchestrator
			const suberror = {};
			suberror.errorType = targetZObject.Z1K1;
			const stringKey = suberror.errorType + 'K1';
			const k1String = targetZObject[ stringKey ];
			if ( k1String && isString( k1String ) && !isZid( k1String ) ) {
				suberror.explanation = k1String;
			}
			return suberror;
		} else if (
			typeof targetZObject === 'object' && targetZObject.Z1K1 && typeof targetZObject.Z1K1 === 'object' &&
			targetZObject.Z1K1.Z885K1 && typeof targetZObject.Z1K1.Z885K1 === 'string' &&
			targetZObject.Z1K1.Z885K1.match( errorTypeReferenceRe )
		) {
			const suberror = {};
			suberror.errorType = targetZObject.Z1K1.Z885K1;
			const stringKey = 'K1';
			const k1String = targetZObject[ stringKey ];
			if ( k1String && isString( k1String ) && !isZid( k1String ) ) {
				suberror.explanation = k1String;
			}
			return suberror;
		}
		return undefined;
	}
 
	const subError = checkIfSuberror( zobject );
	if ( subError ) {
		if ( subError.explanation ) {
			// In this special case, there won't be any nested suberrors; look no further
			subError.children = [];
		} else if ( errorTypesNotToTraverse.has( subError.errorType ) ) {
			// Also in this case, there won't be any nested suberrors; look no further
			subError.children = [];
		} else {
			subError.children = extractNestedSuberrors( zobject, subError.errorType );
		}
		return [ subError ];
	}
	return extractNestedSuberrors( zobject, null );
}
 
/**
 * For each suberror type, these are its keys whose values should be included
 * in the traversal conducted by extractNestedSuberrors(), because
 * they may contain nested error content.  We include both local and global
 * forms of the keys, to make sure all currently generated errors are covered.
 *
 * If a suberror type isn't listed here, *all* of its keys' values will be traversed.
 * It is not necessary for each suberror type to appear here, but if one does,
 * it should *not* appear in errorTypesNotToTraverse.
 *
 * New error types will be handled without updating this map or errorTypesNotToTraverse
 * (albeit not necessarily optimally).
 */
const errorKeysToTraverse = new Map( [
	[ 'Z502', new Set( [ 'Z502K2', 'K2' ] ) ], // Not wellformed, [value]
	[ 'Z506', new Set( [ 'Z506K4', 'K4' ] ) ], // Argument type mismatch, [propagated error]
	[ 'Z507', new Set( [ 'Z507K2', 'K2' ] ) ], // Error in evaluation, [propagated error]
	[ 'Z517', new Set( [ 'Z517K4', 'K4' ] ) ], // Return type mismatch, [propagated error]
	[ 'Z518', new Set( [ 'Z518K3', 'K3' ] ) ] // Object type mismatch, [propagated error]
] );
 
/**
 * Finds all suberrors in the children objects of the given zobject, as described for
 * extractErrorStructure().  In that function we check whether the top-level
 * object is a suberror; here we look at the children objects.
 *
 * Special-purpose function; only meant to be called from extractErrorStructure().
 *
 * @param {Object} zobject
 * @param {string|null} errorType
 * @return {Array} of objects
 */
function extractNestedSuberrors( zobject, errorType ) {
	const nested = [];
	if ( zobject !== null && typeof zobject === 'object' ) {
		const keysToTraverse = errorKeysToTraverse.get( errorType );
		// eslint-disable-next-line es-x/no-object-entries
		Object.entries( zobject ).forEach( ( [ key, value ] ) => {
			// We've already looked inside Z1K1/type; no need to look again
			if ( key !== Constants.Z_OBJECT_TYPE &&
				( keysToTraverse === undefined || keysToTraverse.has( key ) ) ) {
				nested.push( ...extractErrorStructure( value ) );
			}
		} );
	}
	return nested;
}
 
module.exports = exports = {
	methods: {
		hybridToCanonical: hybridToCanonical,
		canonicalToHybrid: canonicalToHybrid,
		getValueFromCanonicalZMap: getValueFromCanonicalZMap,
		extractErrorStructure: extractErrorStructure,
		extractZIDs: extractZIDs
	}
};